A New Approach of Local Feature Descriptors using moment Invariants

نویسندگان

  • Lee-Yeng Ong
  • Siong-Hoe Lau
  • Voon Chet Koo
چکیده

Moment invariants have been widely introduced in recognizing planar objects for a few decades. This is due the robustness of moment function in distinguishing the original identity of object under various two Dimensional (2D) transformations. A set of moments computed from a planar images, represents the global description of an object’s shape and geometrical features of an image. Since global descriptor utilizes the information of a whole object or shape to describe the features of an object, it does not tolerate occlusion. If there is a mixture of regions that do not belong to the object of the interest, an additional task of segmentation is required to isolate the object for recognition. Hence, moment invariants are proposed to be employed as local descriptors for object recognition since local descriptors do not suffer from the drawbacks caused by image clutter and occlusion. A new approach of local feature descriptors using moment invariants is presented. The preliminary framework is divided into three different stages. Interest points are firstly detected in the entire image. The local descriptors are then produced by applying moment invariants on the region around the interest points. Cross-correlation is finally carried out for feature matching.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fish Shape Recognition using Multiple Shape Descriptors

This paper studies recognition of fish shapes using both Region based and Contour based shape based descriptors[9]. Moment Invariants are chosen as the Region based descriptor and the Simple (geometric) shape descriptors (SSD) are used as Contour based shape descriptors. The shapes are varied through scaling and rotation. Manhattan Distance is used as the classifier. The study of the recognitio...

متن کامل

Semantic Segmentation of Outdoor Areas Using 3D Moment Invariants and Contextual Cues

In this paper, we propose an approach for the semantic segmentation of a 3D point cloud using local 3D moment invariants and the integration of contextual information. Specifically, we focus on the task of analyzing forestal and urban areas which were recorded by terrestrial LiDAR scanners. We demonstrate how 3D moment invariants can be leveraged as local features and that they are on a par wit...

متن کامل

Moment-based local binary patterns: A novel descriptor for invariant pattern recognition applications

A novel descriptor able to improve the classification capabilities of a typical pattern recognition system is proposed in this paper. The introduced descriptor is derived by incorporating two efficient region descriptors, namely image moments and Local Binary Patterns (LBP), commonly used in pattern recognition applications, in the last decades. The main idea behind this novel feature extractio...

متن کامل

A Novel Method for Content Base Image Retrieval Using Combination of Local and Global Features

Content-based image retrieval (CBIR) has been an active research topic in the last decade. In this paper we proposed an image retrieval method using global and local features. Firstly, for local features extraction, SURF algorithm produces a set of interest points for each image and a set of 64-dimensional descriptors for each interest points and then to use Bag of Visual Words model, a cluster...

متن کامل

Local Feature Based on Moment Invariants for Blurred Image Matching

This paper presents a new local feature scheme for image matching between a strongly blurred image and a non-blurred image. In recent years, a lot of local feature schemes have been proposed to improve the image matching performances. However, as far as the authors know, there are no local features which are robust to strong blur. In this paper, blur moment invariants are introduced into a loca...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • JCS

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2014